La redistribución de los átomos y electrones cuando se dobla un material se puede aprovechar para generar una corriente eléctrica. Hasta ahora se pensaba que esta propiedad, denominada flexoelectricidad, era exclusiva de los materiales aislantes, pero investigadores del instituto ICN2 han demostrado que los materiales semiconductores también pueden ser flexoeléctricos e incluso generar mucha más electricidad que los aislantes. El descubrimiento ya se ha patentado por sus posibles aplicaciones.
Investigadores de la Universidad de Córdoba han desarrollado una técnica para crear nanomateriales en una zona donde se pone en contacto el oro sólido con una disolución líquida. Las interacciones moleculares que se producen en ese diminuto espacio se podrían aplicar en nuevas tecnologías electrónicas y en el desarrollo de biosensores.
Investigadores de la Universidad Autónoma de la Autónoma han analizado con pinzas ópticas la orientación de partículas nanométricas cilíndricas, denominadas nanorods, cuando son atrapadas. Esta técnica permite atrapar y operar mediante la luz, de manera delicada y precisa, pequeños objetos. Conocer la orientación del objeto atrapado es fundamental para su correcta manipulación y aplicación.
Investigadores de la Universidad de Córdoba han comprobado la mayor capacidad de las nanopartículas para el estudio de otras de su mismo tamaño en muestras ambientales, agroalimentarias y clínicas. El trabajo presenta ejemplos en los que se observa la determinación de nanomateriales usando estas herramientas nanoscópicas como los nanotubos de carbono.
Investigadores de la UAB y del ICN2 han desarrollado un sistema de nanoencapsulación que aumenta la eficacia de los bacteriófagos, virus inocuos utilizados para eliminar infecciones bacterianas, incrementando su resistencia al ácido del estómago y alargando su actividad una vez están en el intestino. El sistema, publicado en Applied and Environmental Microbiology, ha sido probado con éxito en animales con Salmonella y podría aplicarse en seres humanos.
Un punto cuántico aislado en el centro de una cavidad óptica es capaz de emitir millones de fotones únicos y casi perfectamente indistinguibles por segundo, lo que supone toda una revolución en el campo de la información cuántica. Esta diminuta fuente de fotones ha sido creada por un equipo del Centro Nacional para la Investigación Científica de Francia, con la participación de científicos de España y Argentina.
Investigadores de la Universidad Rovira i Virgili, en Tarragona, han creado una nanoestructura tridimensional de trióxido de tungsteno con gran sensibilidad para la detección de gases. Esta nanoestructura ofrece una superficie muy elevada a la hora de reaccionar con gases como el hidrógeno, por lo que puede aplicarse en el desarrollo de sensores mucho más sensibles que los actuales.
Imagina una pluma que ‘pinta’ circuitos electrónicos reales, capaces de conducir la electricidad y encender un LED. Este avance, presentado esta semana en la feria internacional de Hannover, lo han logrado investigadores del Instituto Leibniz para Nuevos Materiales, en Alemania, con la colaboración de una científica española. El secreto es una tinta híbrida formada por nanopartículas de oro y un polímero orgánico conductor.
Investigadores de la Universidad Autónoma de Madrid y de la Universidad Católica de Lovaina (Bélgica) han desarrollado una estrategia basada en la unión de bases nucleicas complementarias, como las del ADN, para formar supramoléculas autoensambladas cíclicas muy estables. Con ellas se pueden crear redes nanoporosas capaces de acoger moléculas funcionales en su interior.
Un equipo de investigadores españoles y alemanes han desarrollado nuevos materiales multifuncionales basados en polímeros con cadenas de cobre y yodo. Estos materiales podrían jugar un papel importante en la próxima generación de dispositivos inteligentes, al presentar interesantes propiedades ópticas y eléctricas.