Los experimentos ATLAS y CMS del Gran Colisionador de Hadrones (LHC) han registrado a 13 teraelectronvoltios esta asombrosa característica de la física cuántica que permite a dos partículas, quarks top en este caso, estar vinculadas a distancia. Este fenómeno es la base de aplicaciones como la criptografía y la computación cuánticas.
El mayor y más potente acelerador de partículas del mundo, el LHC, ha vuelto a ponerse en marcha este viernes tras más de tres años de labores de mantenimiento y actualización. En julio comenzará a recoger datos a una energía récord, sometiendo al modelo estándar de la física a las pruebas más estrictas realizadas hasta la fecha.
Las colaboraciones científicas CMS y ATLAS del Laboratorio Europeo de Física de Partículas han obtenido nuevos resultados que muestran cómo el bosón de Higgs se desintegra en dos muones, unas partículas similares al electrón pero más pesadas. Se calcula que solo uno de cada 5.000 higgs producidos en el gran acelerador LHC experimenta este fenómeno.
La catedrática de la Universidad de Cantabria, una de las físicas españolas más relevantes, ha fallecido este martes a la edad de 63 años. Lideró uno de los equipos del experimento CMS del gran colisionador de hadrones del CERN.
Esta semana ha vuelto a funcionar el gran colisionador de hadrones del CERN, el mayor acelerador de partículas del mundo. En pocas semanas se producirán más de mil millones de choques cada segundo en experimentos como ATLAS, CMS, ALICE y LHCb, donde los científicos explorarán campos desconocidos de la física en rangos de energía jamás alcanzados.
Una centésima de nanosegundo después del Big Bang se decidió nuestro destino, cuando el bosón de Higgs se decantó ligeramente por la materia frente a la antimateria y se originó todo. Así lo cuenta el físico italiano Guido Tonelli en su libro El nacimiento imperfecto de las cosas, que ha presentado en España. El que fuera uno de los protagonistas del descubrimiento del famoso bosón habla con Sinc sobre los momentos agridulces vividos en el CERN y los grandes retos que quedan por delante.
Tres años después del anuncio del descubrimiento del bosón de Higgs, el Laboratorio Europeo de Física de Partículas (CERN) ha presentado la imagen más nítida de esta nueva partícula. Según la institución, las mediciones combinadas de los equipos de los detectores ATLAS y CMS del Gran Colisionador de Hadrones (LHC) han permitido desvelar nuevos detalles sobre cómo se produce y se desintegra el bosón, además de determinar cómo interactúa con otras partículas.
El LHC del CERN ha proporcionado más de 10 billones de colisiones a los grandes experimentos desde que ha comenzado a operar a 13 teraelectronvoltios en su segunda fase de operación o Run 2, y ya se han 'redescubierto' todas las partículas elementales menos el bosón de Higgs. Esta información, junto al registro de nuevas partículas y medidas de precisión de procesos del modelo estándar, se han presentado esta semana en Viena en la conferencia de Física de Altas Energías.
Tras una parada técnica de casi dos años y varios meses de puesta en marcha, el Gran Colisionador de Hadrones del CERN ha proporcionado colisiones a sus experimentos a una energía sin precedentes de 13 teraelectronvoltios (TeV), casi el doble de la utilizada en su primer ciclo de funcionamiento. El LHC funcionará de forma continua los próximos tres años. Cerca de 200 científicos y técnicos de diez centros de investigación españoles participan en este gran proyecto de la física.
Hace un par de meses los científicos del telescopio BICEP2 anunciaron la primera evidencia sobre las ondas gravitatorias del comienzo del universo, pero sus datos se podrían basar en una mala interpretación de un mapa del satélite Planck que les sirvió de referencia. El rumor se extiende rápidamente por internet, aunque el equipo descubridor defiende su trabajo.