La prótesis está conectada a imanes implantados en los músculos del antebrazo y ha sido probada por un italiano de 34 años que pudo moverla y realizar distintas tareas simplemente activándola con el pensamiento. “Es como volver a tener mi mano”, ha dicho el paciente.
Investigadores del Instituto Tecnológico de Massachusetts (EE UU) han presentado una interfaz neuroprotésica que permite a la extremidad biónica responder plenamente al sistema nervioso humano. De esta forma se ha logrado aumentar en más de un 40 % la velocidad de siete personas amputadas por debajo de la rodilla, además de mejorar su rendimiento en entornos reales como escaleras, pendientes y caminos con obstáculos.
Expertos de ingeniería biónica de EE UU han desarrollado una pierna para personas amputadas que reproduce la biomecánica de la rodilla, el tobillo y la articulación del dedo del pie. El nuevo dispositivo tiene el mismo peso y tamaño que las prótesis sin motor. Además, no necesita ser recargada durante varios días.
Las propiedades mecánicas y térmicas de los cementos con los que se fabrican las prótesis de hueso mejoran con la adición de óxido de grafeno, un material que también ayuda a reducir el calor generado al fusionar sus componentes. Así lo muestra una investigación realizada en la Universidad Politécnica de Madrid.
Elena García Armada ha liderado el desarrollo del primer exoesqueleto pediátrico para ayudar a caminar a niños que sufren tetraplejia y atrofia muscular espinal. Esta investigadora en robótica del CSIC trabaja ahora para adaptar el dispositivo a otras enfermedades, como la parálisis cerebral. Para lograrlo necesita más financiación.
Investigadores de la Universidad Politécnica de Madrid han ideado un procedimiento que consiste en depositar sobre la superficie de prótesis metálicas una capa de menos de una micra con moléculas que se encuentran de forma natural en el organismo. El método disminuye el rechazo que genera nuestro cuerpo hacia los implantes. La técnica permitirá además aumentar la duación de las prótesis, según los autores.
Investigadores del Instituto Catalán de Nanociencia y Nanotecnología han respondido a una de las grandes cuestiones sin resolver del proceso de autoreparación de los huesos: ¿cómo se activan las células responsables de formar nuevo tejido óseo? Sus resultados identifican un fenómeno electromecánico que se da en la nanoescala, la flexoelectricidad, como posible mecanismo que estimula y guía la respuesta celular durante el proceso de reparación de una fractura. El trabajo tiene implicaciones potenciales en el campo de las prótesis.