Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Agencia Sinc
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Esta innovadora pierna biónica mejora la marcha y naturalidad al caminar

Investigadores del Instituto Tecnológico de Massachusetts (EE UU) han presentado una interfaz neuroprotésica que permite a la extremidad biónica responder plenamente al sistema nervioso humano. De esta forma se ha logrado aumentar en más de un 40 % la velocidad de siete personas amputadas por debajo de la rodilla, además de mejorar su rendimiento en entornos reales como escaleras, pendientes y caminos con obstáculos.

Una persona subiendo escaleras con una pierna biónica
Pierna biónica equipada con la nueva interfaz neuroprotésica, lo que permite a su usuario una mayor agilidad para caminar. / Hugh Herr and Hyungeun Song (MIT)

Uno de los objetivos en el desarrollo de prótesis para personas amputadas es que puedan emular las prestaciones del miembro perdido. Ahora, una nueva interfaz neuroprotésica desarrollada por investigadores del Instituto Tecnológico de Massachusetts (MIT) en Estados Unidos se acerca a ello junto a una pierna biónica, respondiendo completamente al sistema nervioso, lo que acelera la capacidad de marcha y un caminar más natural.

El nuevo sistema aumentó en un 41 % la velocidad de marcha de siete personas amputadas por debajo de la rodilla, respecto a otras que no lo llevaban, y mejoró su rendimiento a la hora de subir escaleras, pendientes, recorrer caminos con obstáculos y otros entornos reales.

El nuevo sistema aumentó en un 41 % la velocidad de marcha de siete personas amputadas por debajo de la rodilla, respecto a otras que no lo llevaban

La propiocepción es un sexto sentido que nos informa de la posición en el espacio de las partes de nuestro cuerpo. La nueva interfaz permite transmitir información de control neuronal a la prótesis y devuelve al usuario la sensación propioceptiva de esta, por lo que no se siente como algo ajeno y mejora la forma de regular el movimiento.

Así lo explicó en una rueda de prensa virtual el investigador Hugh Herr del MIT y autor principal del estudio, publicado en esta semana en la revista Nature Medicine. Herr destacó que ningún estudio anterior ha podido demostrar “este nivel de control cerebral” sobre una prótesis lo que produce una marcha natural y a un ritmo similar al de una persona no amputada.

Para crear el movimiento de una extremidad en toda su amplitud, los músculos actúan en pares agonistas-antagonistas y transmiten señales propioceptivas al sistema nervioso central, lo que proporciona a la persona la conciencia de la posición y el movimiento. La amputación quirúrgica de una extremidad provoca un deterioro considerable de la arquitectura neural-muscular en el lugar de la amputación, que altera la dinámica muscular y la propiocepción.

El sentir natural del movimiento

La interfaz conectó quirúrgicamente pares musculares agonista-antagonista, cada uno con electrodos de detección muscular y un pequeño ordenador que decodifica las señales

El equipo creó una interfaz que conectó quirúrgicamente pares musculares agonista-antagonista, cada uno con diversos electrodos de detección muscular y un pequeño ordenador que decodifica las señales.

Herr explica: “Aunque su extremidad esté hecha de titanio, silicona y todos esos componentes electromecánicos, esta se siente natural y se mueve de forma natural sin ni siquiera pensar en ello”, así cuando el paciente piensa en mover su extremidad biónica siente que los músculos se mueven naturalmente como lo hacían cuando tenía la pierna intacta.

Todo el ciclo de la marcha y la dinámica de la prótesis biónica está controlada por el cerebro, que recibe información de los sensores no solo sobre la posición en el espacio, sino también la fuerza ejercida contra el suelo o la rigidez en función de la velocidad. De hecho, cuando la persona mueve la prótesis “siente ese movimiento con una sensación de propiocepción natural”, destacó el investigador.

Una pequeña cantidad de propiocepción

El estudio se centró en las aferencias musculares propioceptivas, que surgen de receptores que hay en los músculos y articulaciones de todo el cuerpo, las cuales envían información al sistema nervioso central.

El también investigador del MIT y firmante del artículo Hyungeun Song destacó que con solo un 18% de información neuronal biológica fue suficiente para restaurar el control de una marcha funcional, lo que consideró un “hallazgo científico significativo”.

Cuando se proporciona esa conexión neuronal, se produce una personificación. Cuando preguntas a la persona que utiliza la prótesis qué es su cuerpo, incluye la prótesis como parte del mismo

Hugh Herr (MIT)

El cerebro es “tan adaptable” que basta con que reciba una pequeña cantidad de propiocepción para poder controlar una prótesis muy compleja, completó Herr. Estos resultados sugieren que, incluso el restablecimiento parcial de la señalización neuronal, puede ser suficiente para permitir mejoras clínicamente relevantes en la funcionalidad neuroprotésica.

Para futuros trabajos, los investigadores quieren sustituir los electrodos de la superficie de los músculos por pequeñas esferas magnéticas, que permitan seguir con mayor precisión la dinámica de los emparejamientos musculares para controlar mejor la prótesis. 

El equipo tiene como objetivo conectar el sistema nervioso periférico con la electromecánica y las prótesis sintéticas porque “cuando se proporciona esa conexión neuronal, se produce una personificación: al preguntar a la persona que utiliza la prótesis qué es su cuerpo, incluye la prótesis como parte del mismo”.

“Es un paso decisivo, valga el juego de palabras, hacia ese objetivo a largo plazo del control neuronal total y la personificación”, concluye Herr.

Referencia: 

Hugh M. Herr et al. "Continuous neural control of a bionic limb restores biomimetic gait after amputation". Nature Medicine, 2024

Fuente:
EFE
Derechos: Creative Commons.
Artículos relacionados