Investigadores del Centro Andaluz de Biología del Desarrollo han analizado más de 68.000 genomas de bacterias superresistentes para explicar por qué algunas de ellas tienen sistemas de vacunación CRISPR Cas frente a virus bacteriófagos.
Hace justo 30 años, el microbiólogo Francis Mojica descubrió, junto a sus directores de tesis en la Universidad de Alicante, unas repeticiones en el ADN de una arquea de las salinas de Santa Pola. Aquella investigación daría lugar a otras que se acabarían aplicando en revolucionarias herramientas de edición genética.
Este biólogo y su equipo trabajan para desvelar la estructura de las distintas tijeras moleculares y así afinar la edición genética. Es también cofundador de TwelveBIO, una spin off de la Universidad de Copenhague, creada con el objetivo de mejorar el diagnóstico y el tratamiento con herramientas CRISPR, que acaba de ser adquirida por una empresa estadounidense.
Estos días han llegado dos informaciones preocupantes desde el gigante asiático. La primera se refiere al cambio radical en la gestión de la pandemia de la covid y sus consecuencias en plena ola de contagios en el país. La segunda es la salida de la cárcel de He Jiankui, el creador de los primeros bebés modificados genéticamente mediante CRISPR. Ambas noticias son ejemplos de una “mala praxis” que afecta a la investigación científica y a la sociedad en general.
Una de las tijeras genéticas CRISPR más conocidas utiliza la proteína Cas9 para seccionar el genoma del virus invasor en zonas concretas. Ahora, investigadores estadounidenses y alemanes han identificado otra, llamada Cas12a2, que corta de forma indiscriminada las moléculas de ADN y ARN de la propia célula infectada hasta acabar con ella. El hallazgo podría aplicarse en el diagnóstico de enfermedades víricas.
Este nuevo enfoque de doble acción, diseñado por científicos del Hospital Brigham and Women's (EE UU) para eliminar tumores establecidos y entrenar al sistema inmunitario, busca erradicar el tumor primario y prevenir la reaparición del cáncer.
Un equipo internacional liderado por investigadores españoles ha comprobado que estos sistemas CRISPR Cas arcaicos revitalizados no solo funcionan, sino que son más versátiles que las versiones actuales y podrían tener “aplicaciones revolucionarias”. Los autores indican que este trabajo abre nuevas vías en la manipulación de ADN y en el tratamiento de enfermedades como el cáncer o la diabetes.
El equipo, dirigido por el catedrático de la Universidad de Oviedo Carlos López Otín, ha realizado un complejo cribado genético de todo el genoma humano, mediante la tecnología de edición CRISPR Cas9, hasta lograr identificar los genes necesarios para la infección por el SARS-CoV-2.
Este sistema, desarrollado por investigadores del CSIC y la Universidad de Valencia, aúna la rapidez de los test de antígenos y la precisión de las PCR para detectar el SARS-CoV-2 mediante la herramienta de edición genética CRISPR Cas9.