Investigadores de la Universidad de Almería han aplicado un método innovador al tratamiento final de las aguas residuales urbanas. Se trata del uso de un tanque o reactor para mejorar la capacidad de eliminación de contaminantes, lo que permite trabajar con más volumen de agua, reducir costes y dañar menos el medio ambiente.
Una investigación de la Universidad de Almería ha dado un paso más en el desarrollo de sistemas de depuración efectivos y económicos que permitan la reutilización de las aguas residuales sin causar daños al medio ambiente.
Científicos del departamento de Ingeniería Química de esta universidad han aplicado una nueva tecnología al tratamiento final o terciario de estas aguas. La innovación se basa en el uso de un tanque o reactor que mejora la capacidad de eliminación de contaminantes, permite trabajar con más volumen de agua y reduce costes.
El dispositivo propuesto es un reactor de carrusel o raceway, denominado así por su similitud con una acequia en la que el agua circula impulsada por un motor con paletas. Esta tecnología, que ya se usa en el cultivo de algunas microalgas, nunca había sido probada para tratar aguas urbanas, según apuntan los investigadores.
Hasta ahora, los procesos de depuración se realizaban en tanques o reactores de tubo de vidrio donde, con ayuda del sol y otros elementos como el hierro, se producía la reacción química necesaria para degradar los contaminantes.
Sin embargo, según los investigadores, estos equipos no son del todo eficaces debido a que trabajan con poco volumen de agua, son caros y están diseñados para otro tipo de efluentes que, como los industriales, presentan una alta contaminación.
"La concentración de sustancias tóxicas en aguas derivadas de fábricas se mide en cientos de miligramos por litro o, en algunos casos, en gramos por litro. En aguas urbanas, esta proporción se reduce a escala de microgramos o nanogramos por litro, es decir, hablamos de microcontaminantes”, explica el investigador responsable del proyecto, José Luis Casas López.
Entre las ventajas del nuevo reactor destaca su volumen por metro cuadrado, que alcanza los 100 litros, cantidad que se incrementa dependiendo de la profundidad del tanque. "Si ésta es de 25 centímetros, hablamos de 250 litros por metro cuadrado. Multiplicamos por veinticinco la capacidad de la tecnología tubular", comenta el científico.
Otra de las mejoras que aporta es la reducción de los costes del proceso. En este sentido, los expertos señalan que en un reactor tubular, los costes de instalación suponen un gasto aproximado de 400 euros por metro cuadrado de reactor, mientras que un raceway la cifra se reduce a 10 euros el metro cuadrado.
Dos contaminantes modelo y agua sintética
Para evaluar la efectividad del dispositivo, los investigadores realizaron experimentos al aire libre, a escala de planta piloto con un reactor de 360 litros. Tal y como se indica en el estudio publicado en la revista Applied Catalysis B: Environmental, se utilizaron dos de las sustancias tóxicas más resistentes que se aplican en los cultivos de cítricos del mediterráneo. "Elegimos dos contaminantes modelo, un insecticida y un fungicida. Se les llama así porque si se degradan en determinadas condiciones, significa que el resto de tóxicos también se eliminará", indica el experto.
En cuanto al agua, los investigadores diseñaron un efluente sintético. "Durante un experimento, que suele durar meses, trabajar con aguas reales es complicado porque no son estables. Su composición varía. Por eso hay recetas que te permiten formular simulaciones de agua. En este caso hemos imitado el efluente que se obtiene del tratamiento secundario de depuración. Éste consiste en la eliminación de la materia orgánica a través de procesos biológicos en los que participan microorganismos como las bacterias", explica.
El proceso químico para descontaminar efluentes urbanos comienza en el reactor con la captación de los rayos de sol. A su vez, el hierro que contiene el agua, absorbe esa luz y produce una reacción química que libera radicales libres con un poder oxidante tan elevado que rompen o degradan los contaminantes.
Los expertos acometieron pruebas con las distintas variables que influyen en este procedimiento: radiación solar, concentración de hierro y profundidad del tanque. "La luz es un componente fundamental que puede limitar el proceso. Por ejemplo, si se trabaja a mucha profundidad con el reactor, la radiación se queda en la superficie y no llega a la base. Por otra parte, dependiendo de la cantidad de hierro, se absorbe más o menos luz", prosigue el investigador.
Los ensayos demostraron que la capacidad de tratamiento del reactor de carrusel oscila entre los 40 y los 133 miligramos por metro cuadrado y hora, en función de la estación del año y de la luz solar. “Son unos valores altos que corroboran la viabilidad de la nueva tecnología para eliminar esos microcontaminantes que están disueltos en proporciones minúsculas”, asevera el experto.
En este proyecto, financiado por la Consejería de Economía y Conocimiento de la Junta de Andalucía, los expertos han trabajado en modo discontinuo, es decir descargando y cargando el reactor cada vez que se eliminaban contaminantes. Para el próximo trabajo, el objetivo es pasar al modo continuo donde el agua se trata ininterrumpidamente, de forma seguida. "Si eliminamos el tiempo de las operaciones de carga y descarga, el reactor aprovechará más las horas de luz, incrementando su capacidad de tratamiento”, concluye.
Referencia bibliográfica:
G. Rivas, I. Carra, J.L. García Sánchez, J.L. Casas López, S. Malato, J.A. Sánchez Pérez. ‘Modelling of the operation of raceway pond reactors for micropollutant removal by solar photo-Fenton as a function of photon absorption’. Applied Catalysis B: Environmental (2015) 194, 1208-1216. http://dx.doi.org/10.1016/j.apcatb.2014.09.015