Investigadores de la Universidad Autónoma de Madrid han logrado aislar un material bidimensional derivado del antimonio con propiedades que superan algunos de los problemas del grafeno. Su estabilidad en condiciones ambiente e incluso sumergido en agua lo convierte en un atractivo candidato para aplicaciones electrónicas.
Cuando se iluminan con luz polarizada circularmente los semimetales de Weyl y de Dirac, dos análogos en 3D del grafeno, los electrones de su superficie rotan de forma sincronizada con la radiación. Así lo revela un estudio del Consejo Superior de Investigaciones Científicas, cuyos resultados podrían ayudar a diseñar nuevos dispositivos electrónicos y luminosos.
Imagina una pluma que ‘pinta’ circuitos electrónicos reales, capaces de conducir la electricidad y encender un LED. Este avance, presentado esta semana en la feria internacional de Hannover, lo han logrado investigadores del Instituto Leibniz para Nuevos Materiales, en Alemania, con la colaboración de una científica española. El secreto es una tinta híbrida formada por nanopartículas de oro y un polímero orgánico conductor.
Con una molécula de ftalocianina, unos pocos átomos de indio –un metal poco abundante– y la ayuda de un microscopio de efecto túnel se puede construir un nanotransistor. Así lo demuestra un estudio internacional en el que un español del instituto Paul-Drude de Berlín figura como primer autor. El científico también ha creado una aplicación web interactiva para que cualquiera pueda reproducir sus experimentos.
Lucas Viani (Ribeirão Preto-Brasil, 1983) investiga sobre semiconductores orgánicos en el Instituto Universitario sobre Modelización y Simulación en Fluidodinámica, Nanociencia y Matemática Industrial Gregorio Millán Barbany de la Universidad Carlos III de Madrid. Lo hace en el marco del programa CONEX de esta universidad, que cuenta con el apoyo de las acciones Marie Curie de la Unión Europea, el Ministerio de Economía y Competitividad y el Banco Santander. El objetivo es mejorar la eficiencia de los dispositivos electrónicos basados en materiales orgánicos para que se puedan comercializar.
Investigadores de la Universidad Pompeu Fabra de Barcelona han liderado un estudio sobre un nuevo método para implementar implantes electrónicos muy delgados y flexibles dentro del cuerpo humano, dirigidos a estimular eléctricamente los nervios periféricos y recuperar la función motora en personas con parálisis.
La investigadora del Centro Nacional de Investigación sobre la Evolución Humana, Davinia Moreno, ha utilizado el método de Resonancia Paramagnética Electrónica para datar por primera vez los 11 niveles del yacimiento de Gran Dolina la Sierra de Atapuerca (Burgos), que abarcan un periodo de un millón de años.
Un equipo de investigadores europeos, liderado por un español desde la Universidad de Cambridge, ha creado un dispositivo electrónico tan preciso que puede detectar la carga de un solo electrón en menos de un microsegundo. Lo han bautizado como ‘sensor de puerta’ y se podría aplicar en los futuros ordenadores cuánticos para leer la información almacenada en la carga o el spin de un único electrón.
Chip de silicio con el que se ha diseñado el sensor de puerta. / Hitachi Cambridge Laboratory et al.