Científicos del Centro de Investigación del Cáncer han descubierto en ratones que el gen HSF2BP es responsable de una forma de insuficiencia ovárica, una de las principales causas de infertilidad femenina. Este fallo prematuro de los ovarios afecta a entre el 1 y el 3 % de las mujeres menores de 40 años.
La infertilidad humana tiene una incidencia mundial de aproximadamente un 12 % entre las parejas en edad fértil. En el caso de las mujeres, una de las principales causas es la insuficiencia ovárica primaria, que afecta a entre el 1 y el 3 % de las menores de 40 años. Aunque gran parte de estos trastornos tienen un origen desconocido, se cree que en muchos casos las causas podrían ser de origen genético.
Un grupo del Centro de Investigación del Cáncer, centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de Salamanca (USAL), ha identificado –en una familia afectada de insuficiencia ovárica primaria– una variante del gen HSF2BP como responsable causal de dicha enfermedad. Los resultados del trabajo se publican en la revista Biomedicina eLife.
Para profundizar en el mecanismo por el cual la mutación en el gen provoca la infertilidad, el equipo dirigido por Alberto M. Pendás identificó una proteína desconocida hasta ahora, llamada BRME1, que interacciona fuertemente con la proteína HSF2BP, estabilizándola.
Así, la variante infértil humana del gen HSF2BP provoca una reducción de la expresión de la proteína BRME1, que a su vez disminuye la estabilidad de la propia proteína HSF2BP, dando lugar a defectos de la división celular meiótica durante la gestación de gametos, que finalmente provocan la insuficiencia ovárica prematura.
“La meiosis es un tipo de división celular especializada, característica de los organismos que producen gametos, para llevar a cabo la reproducción sexual”, explica Pendás. “A diferencia de la mitosis –donde a partir de una célula diploide se obtienen dos células idénticas a ella–, la meiosis es una división reduccional en la que partir de una célula diploide se producen células haploides o gametos (espermatozoides y oocitos) gracias a un proceso denominado recombinación meiótica”.
“Dicho proceso asegura la unión física entre los cromosomas paternos y maternos, lo que permite su ulterior separación precisa en los gametos”, añade el experto. Como consecuencia de ello, se produce diversidad genética. Errores en cualquiera de estos procesos dan lugar a trisomías como el síndrome de Down, abortos espontáneos o infertilidad.
Natalia Felipe-Medina, primera autora del trabajo, señala que “la identificación y caracterización de la proteína BRME1, así como la caracterización en profundidad de los defectos meióticos de los mutantes de HSF2BP, aportan nuevos conocimientos sobre los mecanismos moleculares que gobiernan una desconocida proteína esencial para la recombinación meiótica”.
Para demostrar el papel de las proteínas HSF2BP y BMRE1, los científicos generaron y analizaron ratones modificados genéticamente con la variante infértil humana en el gen HSF2BP y la deleción (tipo de mutación en la cual se pierde material genético) del gen HSF2BP y BRME1.
De esta forma, pudieron comprobar que los ratones deficientes en el gen HSF2BP eran estériles por defectos meióticos casi idénticos a los ratones carentes del gen BRME1, mientras que los ratones humanizados con el gen HSF2BP presentaban alteraciones sutiles en la recombinación meiótica, que provocaban una disminución de su fertilidad.
Referencia:
Natalia Felipe-Medina, Sandrine Caburet, Fernando Sánchez-Sáez, Yazmine B Condezo, Dirk G de Rooij, Laura Gómez-H, Rodrigo Garcia-Valiente, Anne Laure Todeschini, Paloma Duque, Manuel Adolfo Sánchez-Martin, Stavit A Shalev, Elena Llano, Reiner A Veitia Is a corresponding author, Alberto M Pendás. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. Biomedicina eLife. DOI: 10.7554/eLife.569