El descubrimiento de la misteriosa materia oscura del Universo, la confirmación de la existencia de una supersimetría entre las partículas y el hallazgo del escurridizo bosón de Higgs son algunos de los enigmas de la Física que podrían resolverse en los próximos dos años gracias al éxito alcanzado hoy por el Gran Colisionador de Hadrones (LHC) del CERN, en la frontera franco-suiza. Esta mañana dos haces de protones han colisionado en el LHC a 7 teraelectronvoltios (TeV), la mayor energía alcanzada jamás en un acelerador de partículas.
El momento que miles de físicos de partículas de todo el mundo estaban esperando ha sucedido esta mañana en el CERN, no muy lejos de Ginebra (Suiza). Tras unas horas de retraso por incidencias técnicas, a las 13.06 horas dos paquetes de protones que circulaban por el gigantesco anillo de 27 kilómetros del LHC han chocado, según han confirmado los cuatro detectores (CMS, ATLAS, ALICE y LHCb) de la gran máquina. Comienza así el programa de investigación del mayor colisionador de partículas del mundo.
Los científicos del CERN han arrancado en aplausos cuando las pantallas de sus ordenadores se han iluminado con los gráficos de colores que confirmaban el éxito de las colisiones. “Las manchas azules y rojas son depósitos de energía del calorímetro (medidor de la energía de las partículas) y las rayas amarillas representan las trayectorias que han seguido las partículas cargadas durante la colisión”, explica a SINC Juan Alcaraz, investigador principal del proyecto del CIEMAT en el detector CMS.
Los haces han circulado en sentido contrario a 3,5 TeV cada uno, la mayor energía conseguida hasta ahora en un acelerador, pero al colisionar se ha generado el doble: 7 TeV. Esto supone 3,5 veces más que los aproximadamente 2 TeV con los que trabajan en el colisionador Tevatrón del Fermilab, la “competencia” del LHC en Estados Unidos.
A partir de este momento, y a lo largo de entre 18 y 24 meses, comienza “la serie más grande de nuevos descubrimientos potenciales que los físicos de partículas han visto en más de una década”, según ha señalado Rolf Heuer, Director General del CERN.
Supersimetría y materia oscura
Heuer, que de viaje por Japón ha compartido por videoconferencia el éxito del acontecimiento, ha destacado que el LHC “tiene una oportunidad real en los próximos dos años de descubrir partículas supersimétricas, posiblemente elucidando la naturaleza de la materia oscura, que constituye cerca de un cuarto del Universo”.
La supersimetría es una hipótesis que plantea que a cada una de las partículas elementales de la materia, divididas en fermiones (como los quarks) y bosones (como el fotón), le corresponde un compañero supersimétrico bosón o fermión respectivamente. Así, por ejemplo, el quark “arriba” tiene una partícula supersimétrica “sarriba”, y el fotón tiene otra denominada “fotino”, ninguna de las dos descubiertas hasta ahora.
La partícula supersimétrica más ligera sería el neutralino (en el que participa el “fotino”, entre otros), y podría ser clave para explicar la naturaleza de la materia oscura, que de momento no se ha podido detectar directamente.
Los detectores ATLAS y CMS tendrán cada uno datos suficientes para duplicar la sensibilidad a partículas supersimétricas establecida hasta ahora, 400 GeV. El LHC elevará el rango de descubrimiento hasta 800 GeV.
Los experimentos del LHC también explorarán la posibilidad de descubrir nuevas partículas masivas y dimensiones “extra” (además de las tres conocidas) hasta masas de 2 TeV (también el doble del 1 TeV actual), así como continuar la investigación sobre la asimetría materia-antimateria o sobre por qué las dos no se aniquilaron mutuamente en los instantes siguientes al Big Bang.
En busca del bosón de Higgs
Además de estos descubrimientos potenciales, el programa de investigación del LHC se centrará en la búsqueda del bosón de Higgs, o al menos descartar que se encuentra en determinados rangos de energía. Este bosón mítico en el campo de la física podría explicar la masa de otras partículas elementales y muchos aspectos de la estructura de la materia.
Tan pronto como se hayan "redescubierto" las partículas conocidas del Modelo Estándar aceptado por los científicos, un paso previo necesario antes de buscar “la nueva física”, los experimentos del LHC iniciaran la búsqueda sistemática del bosón de Higgs.
El estudio combinado de las colisiones en los detectores ATLAS y CMS será capaz de explorar un amplio rango de masas, e incluso se podría descubrir si el bosón de Higgs tiene una masa de cerca de 160 GeV. Si es mucho más ligero o muy pesado, será más difícil de encontrar en esta "primera carrera" del LHC.
Miles de científicos en todo el mundo esperan impacientes la llegada de los datos del LHC a través de la red de computación Grid, entre ellos más de dos mil estudiantes de doctorado para elaborar sus tesis.
Después de esta “primera carrera” de alrededor de dos años del LHC –con una pequeña parada técnica entre medias-, la gran máquina se apagará para realizar el mantenimiento rutinario y poder completar los trabajos necesarios para alcanzar la energía para la que está diseñado:14 TeV. Hasta ahora el CERN operaba en ciclos anuales.
"Dos años de funcionamiento continuo es mucho pedir tanto para los operadores como los experimentos del LHC, pero valdrá la pena el esfuerzo", concluye Heuer.
--------------------------------------------------------------------------------------------------------
Declaraciones de los portavoces de los cuatro experimentos del LHC
ATLAS, Fabiola Gianotti: "Con estas energías de colisión récord, los experimentos del LHC se dirigen a una vasta región por explorar, y comienza la caza de materia oscura, nuevas fuerzas, nuevas dimensiones y el bosón de Higgs. El hecho de que los experimentos ya han publicado artículos científicos con los datos del año pasado es muy buena señal para esta primera carrera de la física”.
CMS, Guido Tonelli: "Todos hemos quedado impresionados con el rendimiento del LHC hasta ahora, y es particularmente satisfactorio ver cómo nuestros detectores de partículas están trabajando, mientras que nuestros equipos de física en todo el mundo ya están analizando los datos. Nos dirigiremos pronto a algunos de los mayores misterios de la física moderna, como el origen de la masa, la gran unificación de las fuerzas y la presencia de la abundante materia oscura en el universo. Espero momentos muy emocionantes frente de nosotros”.
ALICE, Jürgen Schukraft: "Este es el momento que esperábamos y para el que nos hemos preparado. Estamos deseando obtener los resultados de las colisiones de protones, y este año, más adelante, de colisiones de iones de plomo, para darnos nuevas pistas sobre la naturaleza de la interacción fuerte y la evolución de la materia en el Universo temprano”.
LHCb, Andrei Golutvin: “LHCb está listo para la física. Tenemos un gran programa de investigación por delante de nosotros para explorar la naturaleza de la asimetría materia-antimateria en más profundidad como jamás se había hecho antes".
-------------------------------------------------------------------------------------
* Más información: Crónica SINC del 'LHC First Physics'