Investigadores de IMDEA Nanociencia y otros centros españoles han logrado encapsular las llamadas ‘moléculas de espín cruzado’ dentro de nanotubos de carbono. Estas moléculas pueden cambiar su espín mediante estímulos como la temperatura, un hecho relevante para el desarrollo de dispositivos espintrónicos y en nanoelectrónica.
Investigadores del Instituto Catalán de Nanociencia y Nanotecnología (ICN2) han demostrado que se pueden generar y manipular corrientes de espín, una propiedad de las partículas elementales, en heteroestructuras basadas en grafeno. El avance, logrado a temperatura ambiente, abre la puerta al desarrollo de nuevos dispositivos electrónicos y memorias magnéticas ultracompactas de bajo consumo.
El espín o momento angular de las partículas se pueda usar para transmitir información en materiales tan novedosos como el grafeno, sin olvidar el respeto por el medio ambiente. Esta es la idea que subyace detrás del proyecto europeo SPRING, liderado por el centro vasco CIC nanoGUNE y que acaba de arrancar con el apoyo de 3,5 millones de euros de la Comisión Europea.
Un equipo internacional de científicos, con participación de la Universidad de Barcelona, ha captado imágenes directas de las ondas magnéticas mediante experimentos en los que se generan secuencias de ondas de espines, los 'giros' de los electrones. El avance puede ayudar a manipular mejor la información en nanodispositivos magnéticos.
Investigadores del experimento LHCb del CERN han registrado por primera vez en bariones –partículas con tres quarks, como los neutrones y protones– un parámetro esencial de la física de partículas: |Vub|, que mide la probabilidad de determinadas desintegraciones de quarks. Este parámetro forma parte de una matriz llamada CKM, que determina las transiciones entre familias de partículas.
Como si de una carretera de doble sentido se tratase, los electrones sobre una determinada superficie de Bismuto circulan por caminos de anchura atómica donde el sentido de circulación viene impuesto por el espín del electrón. Este sorprendente comportamiento ha sido observado en el Laboratorio de Nuevas Microscopías de la Universidad Autónoma de Madrid (UAM), en el marco de una colaboración europea con diversos grupos de física teórica y experimental.
Sobre una imagen de la superficie de Bismuto obtenida con el microscopio de efecto túnel se ilustra el movimiento de los electrones a lo largo de una cadena atómica. Los electrones de un espín (verdes) se mueven hacia la izquierda y los electrones de espín contrario (azules) lo hacen hacia la derecha en sentido contrario.