Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Agencia Sinc

A un paso de demostrar la radiación de Hawking

Stephen Hawking predijo que los agujeros negros pueden emitir radiación de forma espontánea, algo que los científicos llevan décadas tratando de demostrar. Ahora investigadores de la Universidad Complutense de Madrid han propuesto un criterio teórico para detectar este efecto en el laboratorio, un hallazgo que un físico israelí afirma haber conseguido.

La radiación de Hawking implica que los agujeros negros emitan radiación espontánea. / Alain R.
La radiación de Hawking implica que los agujeros negros emitan radiación espontánea. / Alain R.

En los años 70, el astrofísico Stephen Hawking predijo que un agujero negro podría emitir espontáneamente pares de partículas. Según su teoría, una de ellas sería tragada por el agujero pero la otra escaparía hacia fuera, lo que un observador externo vería como una emisión espontánea de radiación por parte del agujero.

“El problema es que esa emisión es muy débil. Si asociamos una temperatura a este espectro, sería muy pequeña, por lo que detectarla es una tarea casi imposible”, admite Juan Ramón Muñoz de Nova, investigador del departamento de Física de Materiales de la Universidad Complutense de Madrid (UCM) y del Instituto Tecnológico de Israel (Technion).

Con esta simulación, el sonido queda atrapado en una región supersónica de la misma manera que las partículas lo hacen en un agujero negro

Científicos de todo el mundo llevan décadas tratando de imitar este fenómeno en el laboratorio, con fibras ópticas, anillos de iones, polaritones –partículas híbridas de luz y materia– o condensados de Bose-Einstein (BEC, por sus siglas en inglés), que son gases de átomos fríos con el mismo estado cuántico.

“La ventaja de los condensados es que su temperatura es muy baja, por lo que se puede estudiar mejor la emisión del análogo de la radiación de Hawking”, destaca Muñoz. “Además, se saben manipular bastante bien y se entiende muy bien cómo funcionan las excitaciones del sistema (fonones), que son el análogo de las ondas sonoras”, añade.

Con esta simulación, el sonido queda atrapado en una región supersónica de la misma manera que las partículas lo hacen en un agujero negro.

En un estudio publicado en New Journal of Physics, el físico, junto a Fernando Sols e Ivar Zapata, también investigadores de la UCM, ha puesto a prueba dos criterios teóricos que tratan de detectar la presencia de esta radiación.

El primero, desarrollado por los propios autores, revela que se pueden medir violaciones de ciertas desigualdades matemáticas producidas por la emisión espontánea de radiación del agujero negro acústico.

“Demostramos que dichas violaciones son únicamente atribuibles a la emisión espontánea de radiación y que no pueden deberse ni a la radiación térmica ni a las ondulaciones de la función de onda del propio condensado”, afirma el físico.

‘Un hito mundial’

El segundo de los criterios, diseñado por científicos italianos, se basa en detectar el entrelazamiento cuántico de los fonones, algo que existiría tras la emisión espontánea de radiación. “En situaciones típicas, ambos criterios son equivalentes desde el punto de vista teórico. Sin embargo, en el laboratorio, solo pueden detectarse las violaciones de cierto tipo de desigualdades”, puntualiza el investigador.

El siguiente paso ahora es probar estas técnicas teóricas en el laboratorio, algo que el científico español está llevando a cabo en Israel junto a un grupo experimental del Instituto Technion. El director del equipo, Jeff Steinhauer, ha publicado un artículo en ArXiv donde afirma haberlo conseguido, un trabajo que, en estos momentos, está pendiente de revisión.

“De confirmarse, supondría un hito a nivel mundial pues sería la primera observación hasta la fecha de la emisión espontánea de radiación de Hawking”, avanza Muñoz.

Referencia bibliográfica:

J. R. M. de Nova, F. Sols e I. Zapata. “Entanglement and violation of classical inequalities in the Hawking radiation of flowing atom condensates”, New Journal of Physics 17, 2015. DOI: 10.1088/1367-2630/17/10/105003.

Fuente: Universidad Complutense de Madrid
Derechos: Creative Commons

Solo para medios:

Si eres periodista y quieres el contacto con los investigadores, regístrate en SINC como periodista.

Artículos relacionados